Q. In a historical experiment to determine Planck's constant, a metal surface was irradiated with light of different wavelengths. The emitted photoelectron energies were measured by applying a stopping potential. The relevant data for the wavelength (λ) of incident light and the

$$\frac{\lambda(\mu m) \quad V_0\left(Volt\right)}{0.3}$$
 corresponding stopping potential (V₀) are given below:
$$\frac{0.3}{0.4} \quad \frac{2.0}{1.0}$$
 Given that $c=3\times10^8 \text{ms}^{-1}$ and $e=1.6\times10^{-19} \text{C}$, Planck's
$$\frac{0.5}{0.5} \quad 0.4$$

constant (in units of J s) found from such an experiment is : (A) 6.0×10^{-34} (B) 6.4×10^{-34} (C) 6.6×10^{-34} (D) 6.8×10^{-34}

[JEE Advanced-2016]

Solution)

$$KE_{max} = hc/\lambda - \phi$$

$$eV_{S} = hc/\lambda - \phi$$

$$1.6 \times 10^{-19} \times 2 = \frac{h \times 3 \times 10^8}{3000 \times 10^{-10}} - \phi \qquad ... (i)$$

$$1.6 \times 10^{-19} \times 1 = \frac{h \times 3 \times 10^8}{4000 \times 10^{-10}} - \phi \qquad ... (ii)$$

From (ii)
$$\phi = \frac{h \times 3 \times 10^8}{4000 \times 10^{-10}} - 1.6 \times 10^{-19}$$

$$1.6 \times 10^{-19} \times 2 = \frac{h \times 3 \times 10^8}{3000 \times 10^{-10}} - \frac{h \times 3 \times 10^8}{4000 \times 10^{-10}} + 1.6 \times 10^{-19}$$

$$1.6 \times 10^{-19} = \frac{h \times 3 \times 10^8}{10^{-7}} \left(\frac{1}{3} - \frac{1}{4} \right) = \frac{h \times 3 \times 10^8}{10^{-7}} \left[\frac{4 - 3}{12} \right]$$

$$1.6 \times 10^{-19} = \frac{h \times 3 \times 10^8}{10^{-7}} \times \frac{1}{12}$$

$$1.6 \times 4 \times \frac{10^{-19} \times 10^{-7}}{10^8} = h$$

$$6.4 \times 10^{-34} \, \text{Js} = h$$